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ON THE REALIZATION OF CONSTRAINTS IN NONHOLONOMIC MECHANICS

V.N. BRENDELEV

The possibility of realizing nonholonomic constraints using large nonconservative
forces is considered. Mechanical characteristics of some geometric ocbjects investi-
gated in /1/ are presented. This makes it possible to consider in a natural way the
transition from the principle for systems without constraints to that of systems
with constraints. Basic formulations are given in invariant form. An example is
presented.

1. Consider a smooth dynamic system defined by the Lagrangian [, a smooth function on the
tangential stratification I'M of the configuration space M, which is equivalent to specify-
ing the Hamiltonian H, a smooth function on the cotangent stratification T*M. The Legendre
representation Z: TM — T*M corresponds to the Lagrangian L.

We denote the local coordlnates inMby ¢,...¢%in TM by ¢,...,¢,¢,..¢", andin
T*M by g, ... ¢ N b P = dL/dg'. The nonconservative forces are defined in TM by the
horizontal form @, or by form o*= (Z™)*® in T*M. In coordinate notation

n n
o= 2:1 Qilg, 0)dd', o* =i21 Qi (g p)dd'

The system trajectories are integral curves of vector field X in T*M, whichis defined
by the equation /2,3/

X _1Q=—dH + o* (1.1)

where Q is a simplectic form in T*M.
In coordinate form Eqg. (1.1l) is equivalent to Hamilton's equations with nonconservative

forces dqi/dt - aH/api’ dp{/dt — ——BH/aq‘ + Qt

If Lagrangian L is nondegenerate, Z is a local diffeomorphism. Then, if € is the in-
tegral curve of field X in T*M and C*={(ZH)*( is a curve on TI'M, C*is the integral
curve of field Y = (Z“’),X in TM. Consequently, the system trajectories are integral curves
of field Y =(ZY), X in TM. Applying to formula (l.l) mapping Z*, we obtain for field Y
an equation of the form

Y Q4+ dH = o (1.2)

where Q; = Z*Q is the fundamental 2 -nd form of the Lagrangian L and Hp = Z*H is the energy
that corresponds to that Lagrangian. Equation (1.2} corresponds to the principle of d'Alambert
/1/. 1In coordinate form this equation is a Legendre eguation of the second kind

I1f the Lagrangian [ is nondegenerate and [ : A (T*M)— Vect (I"*M) is a simplectic iso-
morphism, fp= (ZY, o1 o (Z°9)*, I : A (TM)— Vect (TM) is an isomorphism of l-foxms and of vector
fields, and Eq.{(1.2) assumes the form Iy {Y) = —dH; + @ , hence

Y = —-—IL (dHL)+IL ((0) (1.3)

where A'(X) and Vect(K) are moduli of linear differential forms and of vector fields, res-
pectively, in the manifold K (in our case Kis TM and T*M), and [, (w) is the vector field
of force o relative to the given mechanical system. In coordinate form (1.3) are Legendre
equations that are solvable for dexivatives.

If L is a Lagrangian of the mechanical type, i.e. =880 + U (g), where @G = Y,g,dg*

® d¢’ is the Riemannian metric in M,and U({g) is the force function, Egs.{(l1.3) assume the
form

dgijdt =q¥", dg¥'/dt=T%(q) "¢ + " (0U /3¢ + Q.)
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where I‘k,i are the Christoffel symbols of Riemannian connectedness associated with metric .

2. Let m independent linear nonholonomic constraints

n
hi(Q!Q')'ﬁ‘““ Zai_Mﬂ: qi'=0» ]:i:;m (2.1}
Aemsy

be imposed on the system.

We assume the constraint to be defined by the m-dimensional codistribution 2 on A
stretched over forms y;& A' (M) defined by the equalities ¥;{(X)¥a) = Sx* (hj){a), where Sy : M -
TM is the graph of an arbitrary cross section of X. In coordinate form

n

1= 2 ai "dgt

i=1

The specification of distribution D is equivalent to specifying a (r» — m} -dimensional
distributions in M: in each tangent subspace T.M is fixed a (»n — m)-dimensional subspace
D, (M), in which must lie the velocity vector.

It was shown in /4,5/ that a holonomic constraint may be defined as the limit case of a
system with large potential energy. A particular case of realization of a nonholonomic con-
straint (the motion of Chaplygin‘'s sled by inertia was considered in /6/. We shall consider
the general case of linear nonholonomic constraints.

Let us substitute force

Fo=—p Zlhjﬂ*xj (2.2)
£

for the nonholonomic constraint {2.1) which depends on parameter W >0. In this eguation %
is the natural projection of TM on M. We also represent force (2.2) in the form F = td®
where the potential

m

(Dz—*%p,z}zf

j=1

Operation t: Al (TM)— A' (I'M) was defined in /1/ in coordinate notation T : adg + bdg ~ bdyg).
Note that force F belongs to codistribution a*D.

If L is a Lagrangian of the mechanical type, the vector field F:I;F of force F relat-
ive to the mechanical system considered is an acceptable geometric characteristic of that force.
Since the form of F is horizontal, the field I F is vertical /1/. For any §(eTM the iso-
morphism/7 /Iy : T, M ~>Ty (ToM)}, where @ = n{§), is determinate. In coordinate notation, when

zgmLAm e

=1

then
L (Za)‘*ZA’ x
i==1
For any point E& TM vector I (I F); is orthogonal to the subspace Dy in metric G.
The equations of motion of the system with acting force F are of the form

X Q= —dH + o*+ F* (2.3)

(g

In coordinate notation

dgildt = aH/op*
m
i aH m
—%=w3;;+0i(q,p)—- ka (g, p) ai™™

71

We select the quasi-velocities aV, ..., ni™;x" = a'¢" so that At = fy j=1, L my g
gt oal, .. @) is a system of coordlnates of the submanifold S = {{(g, q) E TMl hy (q, q) = 0}

and pass to coordlnates vt = AL*/onY = b p" in T*M, where L* (g, n) =L (g, ¢ (g, %), &/'b’ = & In
the system of coordinates ¢!, ..., g% ..., U" Egs.(2.3) are of the form
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i *
dq LN aﬂ
dot o 0HN Lof BB g % . g
b e 'aqk ~— VijkV Pe3 QR x— P 8V

8=}

The form of Egs.(2.3) in the system of coordinates ¢, v implies that when p == co they
become the equations of motion of a system with constraints {2.1).

3. Using the notation (&, ..., 2% ={¢, ..., q% v, ..., V), 2 —m =l we write Egs. (2.3)
in the form
" =g .. L2, i=1,...,1 (G.1)
€ ($l+7)' = Ef1+j (.’t) + h.i (z), | = 1,...,.m

where & ==1/p is a small parameter.

Further analysis is effected locally, assuming that system (3.1) is in region U of
space R? of variables 2zi,...,2%". Unless otherwise stated, solutions will be consideredwith
the initial condition Py = {z, ..., z,*")on surface I = {z |k {z) = 0}.

Beside system (3.1) we consider the system

' = g (2) 3.2)
& (%) = eygua; (@) + by (2) (

whose solution we denote as follows:
=@, &, &) (3.3)

Function ¢ {f, & &) is also a solution of system (3.1) (with the same initial condition
P,) . Suppose that function g;, A is analytic in region U. Then with a small ¢ we
can represent solution (3.3) in the form of series /8/

@ (E €1, 82) == Qo (¢, €2) + 21 e4'p; (2, €2) (3.4)

where @, (f, &) is the soluticn of system (received from (3.2) when & =0
=g @, 8@ = k@
Solution (3.3) was derived for 0 < & < &° 0< g < 8" , and series (3.4) uniformly con~
verges with respect to @ for 0<(f<{T. In what follows various constants whose values are
unimportant are denoted in like manner. We shall also consider the system

= f; (:s), €381+; (.’Z) + }L,‘ (.’l!) =0 (3.5}
which is obtained from (3.2) for e, =0, and, also, the equation of rapid motions of system

(3.2) Liire
& (@) = e1g14; (2) + by (2) (3.6)
When L is a Lagrangian of mechanical type

G+ Va8 49' @ dg’ =ye;; dnvi ® do (3.7
which implies that
Ohy [0 == e ity i pemmegy Lj=1,...,m

where [l d;;||] is a matrix inverse of matrix | ¢;;|l. Since matrix |{d;;|| is positive definite,
matrix [ 0k/02™ || is negative definite. Hence, if g, is small, all roots of the character-
istic equation of system (3.6) have negative real parts, Note that a similar proof also ap-
plies wvhen L 1is an arbitrary positive definite Lagrangian.

Thus any point on surface &g.; (2} + k;(z) =0, =1,..., m represents an asymptotically
stable equilibrium position of Eq. (3.6). Conseguently the conditions of Tikhonov's theorem
/8,9/ are satisfied, and for 0<Ci<( T there exists the limit lime .9 ({, &, &) =19 (f, &) which
uniformly converges with respect to f on any segment [, Tl, 0 <¢, < T, where V(t, e) is
the solution of system (3.5) with the initial point Py = (2., ..., % 2, ., 2™ 1ying on
surface &g, ;(®) + 2;(2) = 0 (it can be assumed that P (f, &) is discontinuous with respect to
z" with initial condition P, ./8/). As & — 0P, — P, and there exists the limit lime.gp (£
&) = @ (f), where @, () is the solution of system ¥ = g;(2), Mk{z)=0 i=1,....4 j=1,..
. M



354 V.N. Brendelev

By virtue of Tikhonov's theorem there exists the limit limg.o®s (£, &) = ¢, {f) uniformwith
respect to ¢ for 0T,

Series (3.4) is in powers of g and converges when ¢ = g°, hence its radius of converg-
ence r»&° (we assume that r>>¢° and that series (3.4) converge absolutely when & <r). Ac~
cording to the Cauchy— Hadamard formula

_—n 1 1
Tim Yy (2 2g) | = 5 < =

Consequently, beyond some ordinal number N jg@,(t,e)j<e? If gy < 1/(2¢), then for any M >0

NAM NiM -
W Y, s Y (5) <
0 s N =Nt1

Hence there exists the finite limit

a0

im e o (2, &
€140 5=§+1 195 ()

Similarly there exists the limit

x

lim ) e p;(t )
&30 j=N-+1

Also for 0<&<&% 0Lt T we have the limit

T t, &, = lim @ (¢, &, == ]i t,
EM‘P( 1s E2) Ez_:oq‘( €15 £2) Ie:_lllnq’( £y, £}

but in that case there exist the finite limits

N o N
o 5 .
Tm 5, e0;(t,2),  Lim 3 e79; (¢, 23)
B0 jmp &0 j=0

i.e. there exist in some interval (0, &)

N B
l Z 31’@5 (tr Ea) l < 4
=0

Choosing an arbitrary set from N different numbers £, 0< g < ¢g°, we obtain a system lin-
ear with respect to functions g;(s &), With a nonzero determinant. The boundedness of func-
tions @t e),j=1,..., N when 0<g< 0<t< Tis proved by solving that system. Let us now
consider series (3.4) when g =g =2¢. When 0<e< e, 0Lt 7 it is majorated by the conver-

gent series o
IRy
Y(=)
1==0
Hence series (3.4) is uniformly convergent with respect to e When U<<e<x e, 0t T
we have the limit lime.o #¢s (¢, 8) = 0. It is then possible to pass to limit term-by-term, and
consequently, for 0 <Ci<( 7T there exists the limit

lim @ (£, & & = @, () (3.8
€0

when £ =10, 9 (0, ¢, &) = @, () so that equality (3.8) is satisfied for 0<Ct<C 7. The esti-
mate of | ¢ (£ ¢, &) — @, () | on segment [0, T] shows that the convergence is uniform.
Proof of the theorem in Sect.3 is simplified by using the results of /10/.

4, The preceding considerations imply that force F () realizes the nonholonomic con-
gstraint (2.1). This means that when ¢ = ¢ (£, p) is the trajectory of system (2.3) with in-
itial condition P, determined on segment O0<f<{ T, there exists the uniform with respect
to § limit

ﬁ_rg gt, ) =g @

The limit function g (f) is the trajectory of a system with conmstraint (2.1}, i.e. at
large values of parameter R the trajectory of the system with acting force F {u) and the system
with the nonholonomic constraint (2.1) are close. At transition to limit as {. — o0} the
trajectories are the same, with the mean value of force F oscillating about S is the reac-
tion force R of the nonholonomic constraint. Force R belongs to the codistribution D,
Thus naturally arises the codistribution in which lie the nonholonomic constraint reaction
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forces. For Lagrangians of the mechanical type the geometric characteristic of l-forms belong-
ing to the codistribution n*D was given in Sect.2. The constraint realized by force F (p)
is ideal. Indeed, the virtual displacement is determined as the vector field T (Z) in T'Msuch
that field Z is cancelled by the codistribution D. But the codistribution n*D cancels field
T (Z),which means that the work of the constraint reaction force over the virtual displacement
is zero.

Example, For small plate with knife edge on an inclined plane /6/ the equation of non-
holonomic constraint is of the form

v=—zsinp4 ycosg=0 (4.1)

We substitute a force dependent on parameter pu for constraint (4.1). The equations of
motions in guasi-coordinates are of the form

v = pp + gsin & cos @ (4.2)
e e w0 —gSinasing —py, @ =0
u= z'cos ¢+ y sin g
ve — 2z sing -y cosg, =g

Solving system {4.2) with initial conditions z(0) = p({O)=¢g@ =20 =y 0)=0,9 (0) = v, and
passing to the limit (u- o), we obtain

. . ‘
z= g;::,a sinfopt , y= % (mot — = sin Zm,,t) (4.3)

@ == ot
Equations (4.3} are the equations of motion of the system with the nonholonomic constraint (4.1).

The author thanks V.V. Rumiantsev and A.S. Sumbatov for interest in this subject and dis~
cussion of results.
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